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Innovation Sandbox for Artificial Intelligence (AI)

This document was created within the scope of the Innovation Sandbox for Artificial Intelligence (AI). 
The sandbox is a test environment for the implementation of AI projects from various sectors. This 
broad-based initiative involving public administration, industry and research, is designed to promote 
responsible innovation by allowing the project team and participating organisations to collaborate 
closely on regulatory questions and enabling the use of novel data sources.  
More Information

Infrastructure maintenance of roads, bridges and 
dams offers great potential for use of artificial intelli-
gence (AI). AI-based image recognition can systemat-
ically and automatically detect the tiniest of cracks  
or defects. Infrastructure operators still largely carry 
out inspections manually. Within the scope of the  
Innovation Sandbox for Artificial Intelligence (AI), IBM 
Research and pixmap gmbh implemented a pilot  
project on the Dubendorf Air Base, to assess the po-
tential of AI-based inspections. In the project, a drone 
created high-quality imagery of the runway using AI 
to automatically detect any defects. The project find-
ings are being employed to advance the use of AI for 
inspection and maintenance of further infrastructure 
elements. The imagery is being made available to  
other innovation stakeholders. By way of this project, 
the collaboration between public administration,  
military, research and private industry is contributing 
to the further development of the Zurich Metropolitan 
Area as an international hub for AI.  

https://www.zh.ch/en/wirtschaft-arbeit/wirtschaftsstandort/innovation-sandbox.html
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The maintenance and inspection of infrastructure 
elements, such as roads, bridges and dams, is of 
immense significance for public safety and for 
maintaining economic activity. That being said, 
infrastructure operators are faced with a massive 
and complex task: Switzerland’s road network 
is more than 84,000 km long.1 More than 40,000 
bridges span gorges, valleys and rivers.2 With over 
200 major dams and thousands of small-scale ones, 
Switzerland is the country with the highest density 
of dams in the world.3 This raises the question as to 
how such a vast quantity of infrastructure elements 
can be monitored efficiently. Numerous inspection 
processes are based on manual surveys of cracks, 
defects and other irregularities in infrastructure. This 
leads to a series of challenges ranging from lack of 
efficiency to human error. The potential offered by 
AI automation has not yet been tapped. In chapter 
one of this document, the four core challenges of 
manual inspections will be explored, followed by an 
elucidation of the potential of automated inspection 
through image recognition.

Lack of efficiency 

Manual inspections require that a person physically 
inspect the entire surface of an infrastructure, e.g. 
runways or road sections. As a result, manual in-
spections not only consume a great deal of time and 
human resources, but also tend to make maintenance 
cycles longer than they should be. The process of 
inspecting infrastructure elements by physically walk-
ing or driving across them is the cause of delays which 
could be avoided with the help of automated systems.  
Manual inspections also tend to be very costly. 

I.

Challenges of  
manual inspections 

Poor documentation 

Whereas manual inspections do provide data on 
defects and issues, they often lag behind what is 
technically possible today. In many cases, instead  
of a comprehensive digital image (digital twin*)  
that continually documents the condition of an 
infrastructure over a longer period, a list of problem-
atic areas or defects is compiled. The location of 
the defects is often only roughly indicated, making 
it harder to fix the problem. The absence of a digital 
model with automated recognition also means that 
data is often not integrated into operating systems 
and thus cannot serve as a basis for decision- 
making.  

Human error

Humans make mistakes which can be due to con-
centration problems, especially in the context of 
repetitive and tedious tasks, such as inspecting long 
stretches of roads. Furthermore, there is the issue of 
consistency: what may qualify as a defect to one 
person may be deemed insignificant by another. Un-
recorded defects or mix-ups can lead to expensive 
repairs or even infrastructure risks. 

Safety hazard

Manual inspections often harbour risks for inspec-
tion staff, especially when tasks involve working 
in exposed locations, such as in the vicinity of 

* The highlighted terms in the text are explained in the glossary.
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high-voltage lines or in high places. Accidents occur 
every year as a result of manual inspections. Where-
as safety equipment and training can help to reduce 
risks, the question remains as to whether it makes 
sense to expose people to such risks, seeing that 
technological alternatives are available.

Potential for automated inspections 

The mentioned challenges point to the major poten-
tial of automated inspections. The progress made 
in image recognition technology is paving the way 
to new opportunities to overcome some of these 
challenges and to significantly increase efficiency 
and precision of inspection processes. In this pro-
ject, the stakeholders from public administration, 
research and industry joined forces to contribute to 
automated infrastructure maintenance. IBM Re-
search submitted a project proposal to the Innova-
tion Sandbox for AI in spring 2022. The idea was to 
make use of the experience gained from previous 
projects with AI-based bridge inspections and to 
expand this knowledge to airport runways. The 
Innovation Sandbox for AI supported this innovation 
initiative through providing high-quality image data 
and by engaging the Dubendorf Air Base as a pro-
ject partner from the innovation ecosystem of the 
Zurich Metropolitan Area. The creation of imagery 
was done in collaboration with pixmap gmbh, a 
company specialised in conducting inspections and 
surveys with drones and flying robots.   

This report is divided into the following sections: 
chapter two describes the process and insights 
gained from the drone missions carried out by pixm-
ap gmbh. Chapter three gives an overview of the 
automated evaluation of the imagery using IBM Re-
search image recognition technology. A conclusion 
is drawn in chapter four and several potential areas 
of action shown as to how to advance automated 
inspections of infrastructure elements in the Zurich 
Metropolitan Area. A description of the technical 
details of image recognition by IBM Research is  
provided in the appendix.

1 Infrastructure and network length| Federal Statistical Office 
(admin.ch)

2 Across rivers and gorges – Explora (ethz.ch)

3 Swiss dams – second to none | House of Switzerland

I. Challenges of manual inspections

https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/verkehrsinfrastruktur-fahrzeuge/streckenlaenge.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/verkehrsinfrastruktur-fahrzeuge/streckenlaenge.html
https://www.explora.ethz.ch/s/ueber-fluesse-und-schluchten/#:~:text=Die%2520Schweiz%2520ist%2520ein%2520Br%25C3%25BCckenland,und%2520erschliessen%2520die%2520entlegensten%2520Bergregionen.
https://houseofswitzerland.org/de/swissstories/umwelt/einzigartige-schweizer-stauseen#:~:text=Die%2520Schweiz%2520ist%2520das%2520Land,kleinere%2520Stauanlagen%2520unter%2520kantonaler%2520Aufsicht.
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II.

Use of drones to 
create imagery

Comprehensive imagery is the bedrock for automat-
ed detection of cracks and defects in infrastructure 
elements. There are various methods and sources 
from where such data can be drawn. In some cases, 
use of freely accessible satellite images will prove 
sufficient, e.g. when damage to infrastructure is 
clearly visible at low resolution. However, if high-res-
olution imagery is needed for an in-depth inspec-
tion, there is no way around a more targeted image 
capturing. Images can be captured from a ground 
vehicle or from the air, e.g. with a drone. In the case 
at hand, pixmap gmbh used drones. Drones have 
the considerable advantage of being able to pro-
duce systematic images that are accurate down 
to the last centimetre, and that are repeatable and 
in high resolution. Furthermore, drones are easy to 
transport and can be operated at relatively low 
cost.  

The Dubendorf Air Base put a more than 2.8 
km long runway at the disposal of the pilot project. 
The airport operator defined a representative run-
way section of 200x40m. pixmap gmbh took pic-
tures of the area in the required maximum quality by 
means of a drone, and subsequently made the data 
available to IBM Research for analysing. The very 
high resolution made it possible for IBM’s AI team to 
evaluate whether less high-resolution imagery would 
have been sufficient for an automated analysis of 
the cracks and defects. This is especially relevant 
in view of the operational use of automated inspec-
tions, e.g. if optimum quality is too costly or if data 
collection were to prove too time-consuming for 
regular maintenance work. 

In the given context, planning the use of 
drones meant taking several challenges into ac-
count.   

Regulations: depending on the mission and loca-
tion, there are regulatory requirements applicable 
to the use of drones. With the adoption of the drone 
regulations of EU/EASA on 1 January 2023, statutory 
provisions are even stricter now. Drone operators 
must substantiate with an operating licence that 
risks for third parties on the ground (Ground Risks)  
as well as collisions with other aircraft (Air Risks) 
can, with all likelihood, be avoided. In the present 
case, the runway was closed and the flight altitude 
of the drone was limited to maximum 10 m, so that 
other airfield operations with helicopters were not 
affected.   

Drone/camera requirements: a high-quality cam-
era on a drone with precision GPS is required for 
sub-millimetre resolution images. Modern drones 
can be equipped with full-frame cameras (36x24 
mm sensor size) and resolutions of 40 to 100 MP. It is 
also important to have a camera with short shutter 
speeds so as to avoid motion blurs, and to have a 

Figure 1: 2.8 km long runway of the Dubendorf Air Base in the 
Canton of Zurich
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short trigger interval, in the present case 0.7s. To be 
able to steer the drone with accuracy down to the 
centimetre across the runway, it has to be equipped 
with a special GPS system (RTK-GNSS) and, fur-
thermore, be able to fly autonomously according to 
pre-defined waypoints. 

Dependency on weather: note should be taken that 
these sorts of missions are weather-dependent. 
The runway must be dry, the drone must not cast 
any shadow on the captured surface, and strong 
gusts of wind need to be avoided. Therefore, reserve 
dates/times are important when planning drone 
footage.

In the project at hand, pixmap gmbh was able to 
implement the drone missions as planned on 13 May 
2023.

Figure 2: Quadcopter flying above the runway at ca. 5 m altitude

For the sake of achieving a data basis that is as 
broad as possible, the main mission was slightly 
extended i.e. three different missions with varying 
collection parameters were flown.  

Mission 1: a new resolution level

The typical resolution of drone images in the sur-
vey area is between 1 cm and 3 cm. However, this 
particular mission went far beyond that. The re-
quired maximum resolution of 0.25 mm vis-à-vis 1 cm 
corresponds to a factor of 40 or 1,600 times more 
pixel points per unit area. This led to extreme flight 
parameters: equipped with a high-performance 
camera, the drone had to operate at a flight altitude 
of just 3 m. A very slow flight speed of 0.7 m/s and 
a picture taken every 0.7 s were needed to record 
slightly overlapping images and to avoid motion 
blur. This resulted in very long flight times totalling  
2 hours with approximately 11,500 pictures taken. 

Mission 2: lower resolution as an  
alternative

Whereas the focus of mission 1 (M1) was on maximum 
resolution, mission two (M2) centred on scalability, 
hence, on the option to later be able to scan and 
capture an entire runway. A slightly lower resolution 
of 0.75 mm allowed for a ten-fold faster capturing 
time, with a correspondingly smaller data volume.

Mission 3: focus on mapping

The aim of this mission (M3) was to create an even 
more comprehensive overall image of the runway 
using photogrammetry. For this purpose, all of the 
individual images were converted into one, georef-
erenced orthophoto and a digital elevation model 
using a special software (Pix4Dmapper). This is how, 
in lieu of thousands of individual pictures, a single, 
undistorted overall image was achieved that could 
then be further analysed. Photogrammetric cap-
turing is, however, only possible with significantly 
higher overlaps of the individual images, which, in 
turn, reduces the resolution achievable. If the aim 
is to take photogrammetric images of the entire 

II. Use of drones to create imagery
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runway, a resolution of approx. 1.5 to 2 mm can be 
achieved with today’s technology. For the runway 
section defined in this project, a resolution of 0.6 
mm was achieved. 

Conclusions drawn from the  
drone missions

The results are positive - all of the missions were 
completed successfully on first attempt and allowed 
for high-quality data to be generated straightaway, 
without any gaps in coverage. The comprehensive 
analysis conducted by IBM Research (see chapter 
three) shows that the aim of automatically detecting 
runway defects is achievable even with a slightly 
reduced resolution of 0.75 mm (M2). This means 
that the method applied here can already be used 
today for entire runways or longer road sections. 
Such missions will need to be planned carefully 
with the necessary know-how, and carried out with 
high-quality equipment focussing on goals that 
have been accurately defined by the operator. As 
drone technology continues to move forward, more 
advanced requirements such as photogrammetric 
capturing in the sub-millimetre range will soon be 
possible, with effort and expenditure tending to 
decrease. Use of drones to inspect infrastructure 
elements is undoubtedly of major significance.

Table 1: Comparison of the three drone missions

Mission 1 (M1) Mission 2 (M2) Mission 3 (M3)

Objective Best resolution 
Scalability to 
entire runway 

Mapping/
photogrammetry

Resolution 0.25 mm 0.75 mm 0.60 mm

Flight speed 0.7 m/s 4.2 m/s 1.1 m/s

Flight time 120 min 10 min 60 min for ca. 1/3

Number of images taken ~ 11,5000 ~ 1,200 1 orthophoto

II. Use of drones to create imagery
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III.

Automated visual 
inspection with AI 
foundation models

IBM Research used high-resolution imagery from 
pixmap’s three drone missions to develop automated 
AI-based inspection methods.

Advances in deep learning are enabling 
more and more applications in image recognition 
that were previously considered impossible. Today’s 
fast-paced technological developments are driven 
by the availability of annotated data and special-
ised hardware such as GPU (graphics processing 
units), which facilitate the training of AI models. This 
method falls into the category of machine learning 
and learns from large amounts of data. For this pro-
ject, the latest advances in deep learning were used 
to develop technology that detects small cracks in 
the infrastructure. 

One of the main challenges of the project 
was that annotated data on civil infrastructure is 
rarely publicly available and most image data does 
not reveal any visible defects. Solutions like few-
shot learning, transfer learning and self-super-
vised learning are being explored to overcome this 
challenge.

IBM Research Zurich brought specialist 
expertise in the field of automated visual inspection 
of civil infrastructure to the project, particularly 
in the domain of concrete bridge pillars. The goal 
of the technologies used is to reduce the costs of 
infrastructure maintenance through automated in-
spections, to facilitate systematic documentation of 
structures and to conduct risk assessments. Current 
limitations were also discussed and recommenda-
tions for the future given. The appendix of this report 
gives a detailed description of the methods and 
technologies behind IBM Research’s visual defect 
detection. 

Data organisation

Pixmap carried out three different collection mis-
sions with varying requirements, which was particu-
larly relevant in terms of data volume. This allowed 
IBM Research to optimise the efficiency and ac-
curacy of the collected image data. Mission 1 (M1) 
aimed for the highest level of detail accuracy which, 
however, had a direct impact on the total flight time 
of the drones, the evaluation time and on the scope 
of data processing and costs. To address challeng-
es of handling large data volumes and to reduce 
costs of drone inspections utilising AI models, the 
requirements were relaxed in M2, with a target GSD 
(ground sampling distance) established at 0.75 mm/
pixel, representing a threefold relaxation compared 
to M1. This reduced the data volume by a factor of 
nine, saving time and storage space during data 
processing. Additionally, IBM Research observed 
secondary benefits such as a reduced need for im-
age overlap and acceptance of minor increments in 
motion blur. As well as further reducing the capture 
time and data volume, these modifications provided 
for an efficient and streamlined process while still 
ensuring sufficiently high data quality for analytical 
purposes. Under these circumstances, the higher 
risk of overlooking small defects in M2 was accept-
able. Mission 3 (M3) primarily served as a compari-
son mission with specific overlap requirements and 
covered less total area. IBM Research analysed the 
large amount of image data (> 15,000 high-resolu-
tion images) from each mission separately, to find 
the optimal method for organising and processing 
data as regards detail, accuracy and efficiency.
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Figure 3: Original image from M1. All of the images from M1 have 
a resolution of 0.25 mm/pixel, which results in a very high data 
volume.

Figure 4: Overview image (M2) of the runway section based on 816 
original pictures. Any spot on the overview image can be digitally 
inspected in detail using the zoom function.

Image stitching algorithm 

The main objective of all three missions was to 
merge many individual images into a large, de-
tailed and accurate overview image showing the 
entire section of the runway. The challenge lay in 
the extreme precision required to detect cracks and 
defects in detail.

IBM Research developed a special algorithm 
that operates in multiple phases to merge the imag-
es efficiently and accurately. The method focussed 
on minimising positioning and alignment errors to 
create a coherent and precise overall image. To 
effectively process the immense volume of data, 
the dataset was divided into smaller segments that 
were processed independently and merged later.

Key aspects of image composition included:

Extreme accuracy: the GPS system used by pixmap 
gmbh had an accuracy of up to one centimetre to 
optimise the positioning of individual images. This 
corresponds to a much higher level of detail com-
pared to conventional methods, making the image 
composition very demanding.

Complex algorithms: the developed algorithm 
worked in multiple stages to optimise, align and ulti-
mately merge the data into one large image.

Data management: in order to manage the im-
mense quantity of data, it was broken down into 
smaller, manageable parts that were later merged 
together again.

For the sake of processing efficiency, methods were 
implemented to save and reuse already processed 
data, thus saving valuable computing time.

AI foundation model technology for 
reliable crack detection

IBM Research’s foundation model developed for 
crack detection is based on an automated visual 
inspection data model obtained from a broad range 
of civil infrastructures. The AI uses vision transform-
ers and self-supervised learning. It goes through 
several stages: initially, it is trained on general 
images, then on already available images of civil 
infrastructures such as bridges, to subsequently be 
refined for the specific task of detecting cracks. 
This model was applied to the images from missions 
M1 and M2 and was able to deliver reliable results, 
despite noisy detections at the edges between the 
kerb and the actual runway surface. The automated 
detection of cracks in images is reliable with this 
model. The data from M2 proved sufficient for the 
analysis and detection of relevant cracks and of-
fered a good balance of quality and effort, making 
it feasible to capture the entire runway in half a day.

Figure 5: The automatically detected cracks are highlighted in red 
and supplemented with information on length and severity of the 
defect (see next section).

III. Automated visual inspection with AI foundation models
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IBM OCL tool for presenting results

The IBM One-Click-Learning (OCL) platform is a re-
search instrument developed to present and display 
AI results in a comprehensive manner. It is used to 
visually represent, generate, demonstrate and iter-
ate AI results. In this project, the image and predic-
tion viewers were used to display cracks and defects 
on the runway in Dubendorf.

Features and views of the OCL tool:

Image viewer: Allows access to and navigation of 
all provided images (> 15,000) in structured folders, 
focussing on the three different missions and image 
qualities.

Prediction viewer: Displays the results of the AI 
models and automatically extracts associated  
attributes such as crack length to represent  
pixel-accurate segmentation masks of defects  
in the runway.

Overview viewer: Allows the user to view large  
sections of the runway and navigate in real time.  
It also enables understanding of the context in 
which a defect was detected. 

Merged predictions and overview: Enables the user 
to understand the relationships and positions of all 
defects and consolidates multiple detections of a 
defect in different images into a single prediction.

Table 2: Overview of number of detected crack instances for mis-
sions M1 and M2. The AI model was run in a sensitive mode, thus 
detecting many cracks. The numbers shown in the second line of 
the table are lower as only crack instances with a confidence of 
at least 0.5 were considered. The difference between M1 and M2 
is proportionally much smaller here, which means that the model 
delivers good results even under more challenging conditions.

Statistical viewer: Aggregated statistics are pro-
vided on all detected defects, both for individual 
images and for the entire merged overview.

Reporting functionality: Reports can be created for 
all data captured in the tool, with detailed views of 
each defect, important attributes and direct links to 
OCL for an enlarged view of the visualised defect. 
Georeferencing allows runway maintenance staff to 
manually check defects on the runway and repair 
damages with a sealant.

In the project, OCL was primarily used to demon-
strate and verify results, particularly in the context 
of missions M1 and M2, to facilitate the analysis 
and interpretation of large volumes of data. IBM 
Research provided a comprehensive report and 
specific crack detections for the M2 data. This is 
especially relevant for the use of the project results 
by the competent infrastructure operators.

III. Automated visual inspection with AI foundation models

Mission M1 M2 M2 vs. M1

Total crack instances 3,920 2,629 32.9% less

Confidence (>0.5) 691 586 15.2% less
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Figure 6: OCL image viewer allows access to all original  
project data. 

Figure 7: OCL overview viewer allows users to view large sections 
of the runway in full resolution. 

Figure 8: OCL overview viewer which fully preserves the details  
in full resolution.

III. Automated visual inspection with AI foundation models
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Figure 9: OCL image viewer on which crack detections are  
marked in red on the original image.

Figure 10: Statistical viewer of M2 data on OCL

III. Automated visual inspection with AI foundation models
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IV.

Potential of AI  
in infrastructure  
maintenance

The Innovation Sandbox project “Automated 
Infrastructure Maintenance - Drone Inspections 
with Computer Vision” has demonstrated success-
fully that large volumes of data can be collected 
systematically and evaluated by AI models. Cracks 
were identified correctly in all three missions (M1, M2 
and M3). In practice, to ensure that large areas can 
be scanned within a reasonable time, the collec-
tion process must be carried out efficiently. IBM 
Research has shown that M1 and M2 are superior 
to M3. Furthermore, one of the key findings states 
that the resolution of M2 is sufficient to detect the 
relevant cracks, to provide full documentation on 
them and to make sound decisions with respect to 
the overall condition of the infrastructure. The entire 
runway can be captured by a drone in half a day 
which, in practice, allows for continual inspecting 
(e.g. semi-annually in spring and autumn, to capture 
seasonal differences on a continuous basis). 

Access to high-resolution image data of 
airport runways like the one in Dubendorf is usually 
difficult to obtain. Being able to use real-world data 
within the scope of the Innovation Sandbox for AI is, 
therefore, of great significance for the Zurich Metro-
politan Area as a location for research and innova-
tion. Institutions like IBM Research are thus given 
the opportunity to evaluate and improve the latest 
AI algorithms and strategies in a relevant context. 
Therefore, this type of data will also contribute to 
advancing future developments of AI technology in 
the domain of automated image recognition in the 
years to come.  

Furthermore, every project in which AI appli-
cations are successfully used adds to the assurance 
that the developed foundation models –in this case 
by IBM Research– operate reliably in a broad con-

text. This means that this type of image recognition 
can also be used for inspecting facades of large 
buildings, bridges, dams, tunnels or road surfaces. 

Confirmation of added value of  
automated runway inspections 

This project has confirmed that image recognition 
offers great potential for the automated inspection 
of infrastructure elements. Even if the AI application 
is not yet in operational use, it can be assumed that 
it will be possible to address the four core challeng-
es of manual inspection mentioned in chapter one.

Greater efficiency 

The project has shown that use of drones to collect 
imagery saves time. Furthermore, greater efficiency 
can be achieved through use of image recognition, 
compared to traditional inspection methods per-
formed by ground staff without AI-based reporting. 
Even when AI technologies are in use, an expert 
will, in most cases, need to conduct a final on-site 
validation and evaluation of any detected defects. 
However, the ground staff can carry out the inspec-
tion with the aid of an existing decision-making 
basis. Ideally, the reports with the largest defects 
would be forwarded directly to the maintenance 
company responsible for repairing the damage. This 
would optimise and expedite the entire process. 
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Better documentation 

The opportunity to create digital images of infra-
structure elements and to continuously check them 
offers considerable added value. At present, com-
plete, objective and uniform documentation is, in 
practice, often lacking. Digital imagery is especially 
useful for detailed and systematic checking. It pro-
motes quality assurance given that existing cracks 
and already repaired defects can be monitored 
accurately and over a longer period of time. 

Fewer sources of human error

Use of automated systems helps to minimise hu-
man errors which often occur due to differing and 
inconsistent assessments by experts. Especially in 
the event of changes of staff or short-handedness, 
traditional inspection methods may lead to varying 
evaluations. Automation of inspections through AI 
allows for a consistent and objective analysis and 
evaluation of infrastructure elements, thus render-
ing the results more reliable and comprehensible. 

Greater safety

In dangerous environments, such as dams or bridg-
es, drones can be used to perform inspections in 
order to minimise the risks for humans. Although this 
aspect was not the focus of the current project, it is 
an important aspect, particularly considering that 
inspectors have to expose themselves to potential 
hazards in such environments. Through use of image 
recognition technology in such environments the 
safety aspect can be increased while at the same 
time providing a detailed and precise analysis of the 
respective structures.  

Outlook 

The objective of the Innovation Sandbox for AI is to 
strengthen the innovation ecosystem of the Zurich 
Metropolitan Area. The project at hand is contribut-
ing to this objective. However, widespread use of im-
age recognition in infrastructure maintenance is still 
a distant prospect. Therefore, to make even better 

future use of the potential of Zurich as a location for 
innovation, the project team proposes the following 
action points:

1. Integration of automated inspection in  
existing processes
With a view to maximising the added value of auto-
mated inspections, it is important to integrate these 
technologies seamlessly into existing processes 
of infrastructure operators. This entails, inter alia, 
the development of interfaces in order to interlink 
various applications and to provide the results in a 
format that allows for further processing by infra-
structure operators. Especially during site inspec-
tions on foot, the maintenance staff need access to 
a digital model of the runway with GPS function in 
order to find and verify the cracks identified through 
automated crack detection on site. Furthermore, 
best practices should be made available across 
organisational boundaries so as to share knowledge 
and experience effectively and to thus facilitate 
the introduction and use of automated inspection 
technologies.  

2. New open data approaches within the  
innovation ecosystem
In order to strengthen the innovation ecosystem in 
the Zurich Metropolitan Area, it is essential for new 
open data approaches to be developed. To that 
end, more data based on specific use cases from 
industry, research and public administration should 
be made available. This will enable other stakehold-
ers within the innovation ecosystem to implement 
similar projects. The provision and use of large 
volumes of data from airport runways, bridges and 
dams will allow for innovative solutions to be de-
veloped and the potential of AI-based inspections 
made better use of. 

3. Transferability to other infrastructure elements
Transferability of the tested methods and technolo-
gies to other infrastructure elements such as bridg-
es, roads and dams needs to be explored. Every use 
case comes with specific opportunities and chal-
lenges, which is why interdisciplinary dialogue and 
collaborative thinking across various infrastructure 
categories is important. Such dialogue will promote 
the development of adapted solutions for diverse 

IV. Potential of AI in infrastructure maintenance
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infrastructure elements, thus enabling broad use of 
innovative image recognition technologies in infra-
structure maintenance.

4. Proactive handling of regulatory questions  
Overcoming regulatory obstacles is crucial for 
implementing AI-based inspections with drones. 
Important measures in this regard include setting up 
test environments for experimental applications. In-
depth conversations with regulators, including the 
Federal Office of Civil Aviation (FOCA), and industry 
associations (e.g. Drone Industry Association Swit-
zerland) are important too, in order to define re-
quirements early on, adapt laws in a future-focussed 
manner and to speed up certification processes. 
These strategies can help to reduce innovation bar-
riers and promote the introduction of new inspection 
technologies in the Zurich Metropolitan Area as well 
as Switzerland-wide.

5. Strengthening social acceptance of drones 
A key factor for the successful implementation 
of AI-based drone technology for infrastructure 
maintenance is the strengthening of social accept-
ance of drones. It is important to have an open and 
inclusive dialogue with the general public, so as to 
communicate opportunities and risks transparent-
ly, and to clarify misunderstandings. Information 
events, workshops and educational initiatives could 
help increase knowledge about drone technology. 
Furthermore, meeting zones and experience parks 
could be set up where people are given the opportu-
nity to come up close with drones, experience their 
features and applications and, by so doing, gain a 
better understanding of drone technology. These 
measures could contribute to reducing prejudices 
and be conducive to promoting trust in drone tech-
nology, which, in turn, will support the implementa-
tion of innovative inspection technologies.  

IV. Potential of AI in infrastructure maintenance
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V.

Appendix: Technical  
IBM Research Report 

Recent research trends in deep learning are ena-
bling more and more specific applications in com-
puter vision tasks that would have been unimagi-
nable a decade ago. Two main factors are fuelling 
this development: firstly, the broad availability of 
annotated data allows research to develop, test and 
improve algorithms, and, secondly, the availability 
of high-end computer infrastructure, including ded-
icated hardware such as graphical processing units 
(GPU), is accelerating experimentation times and 
enabling training, testing and the implementation of 
larger AI models. 

Within this context, automated visual de-
fect detection in civil infrastructure (e.g. bridges, 
buildings, or runways) becomes realistic, the goal 
being to use automated inspection to reduce 
maintenance costs, to enable a systematic way to 
document infrastructure at scale and to perform an 
adequate risk assessment. Machine learning (ML) 
techniques that learn from a vast amount of anno-
tated data are trained in a supervised manner, so 
to speak, to gain insights that allow them to make 
predictions on new, previously unseen data. Deep 
learning (DL) techniques are a subset of machine 
learning algorithms that have achieved break-
throughs in many computer vision applications, 
including image classification, image semantic 
segmentation, image instance segmentation and 
video classification.

Typical image vision datasets available in 
research are extremely large - for example, Ima-
geNet features more than 1,000,000 annotated 
images with class labels available for each image, 
which is a prerequisite for supervised deep learning 
algorithms. By contrast, the task at hand of civil 
infrastructure defect detection involved a few chal-

lenging fundamental aspects: firstly, the amount of 
publicly available relevant annotated data in this 
area is small; secondly, visible defects collected 
systematically in existing datasets are rare; thirdly, 
fine-grained instance segmentation annotations 
either do not exist or are challenging and time-con-
suming to create.

Deep learning-based computer vision 
research has shifted the focus to address these 
fundamental issues. Few-shot learning is used when 
only few annotations are available. Transfer learning 
trains AI models in one domain and applies them to 
a slightly shifted but similar domain to study gener-
alisation behaviour. The latest trend of foundation 
models is moving towards training even larger and 
more generalist models from the start which are 
used either directly or indirectly in downstream 
tasks. Self-supervised learning (SSL) techniques are 
used as they allow for images to be recognised and 
reconstructed during the pre-training stage without 
having to rely on annotated data. That being said, 
for this method to be used successfully, pre-training 
will need to be followed by supervised fine-tuning 
with some annotated image data relevant to the 
target task.

IBM Research Zurich has extensive expertise 
working with client-specific data in the domain of 
visual civil infrastructure inspections, most nota-
bly in bridge pillar inspections, but also roadway/
asphalt inspections, radio tower inspections and 
general defect detecting in urban areas, including 
walls and building facades. The project goal within 
the Innovation Sandbox for AI was to demonstrate 
the end-to-end flow and the actual value of auto-
mated visual inspections. Additionally, attention 
was to be drawn to existing limitations and future 
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Figure 1: Overview of the captured missions M1, M2, and M3. Subfigure a) shows the number of captu-
red images. Subfigure b) shows the ground sampling distance per mission. Subfigure c) shows a pre-
view of how the data was captured. M3 was carried out on just 30% of the total area; therefore, the 
estimated number of additional images which would be required to cover the same area of 200x40m 
as in M1 and M2 was added.
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recommendations made as to how the technology 
can be further improved. 

The main contributions of IBM Research to the AI 
Innovation Sandbox project are listed below:

• Comparison of three collection methods  
(missions 1 to 3)

• Image stitching technology to accurately handle 
low overlap setups

• Demonstration of AI models to detect cracks
• Presentation of all of the results using the  

OCL tool
• Short video summarising the results and on use  

of the OCL tool
• Reporting of all findings in a PDF document 

 

Organising large amounts of data 

Three data collection missions were carried out by 
pixmap gmbh (see chapter 2), to obtain information 
about the effects on flight time and to compare the 
image recognition results. IBM Research processed 
the image data of all three missions independently 
of each other in order to gain conclusive insights for 
the variants and to allow for a direct comparison of 
the data collection methods.

Mission 1 (M1) had a conservative resolution 
requirement of 0.25 mm/pixel which was achieved 
by pixmap gmbh in all captured image data of M1. 
These very strict requirements had direct implica-
tions on the overall flight time, the overall evalua-
tion time and on the captured data volume. Data 
volume notably influences how efficiently data can 
be stored, processed, and analysed. To tackle these 
three challenging and costly factors, IBM Research 
relaxed the GSD requirements in M2. GSD stands for 
ground sampling distance and describes the dis-
tance between two consecutive pixels measured on 
the ground. The target GSD of 0.75 mm/pixel for M2 
represented a three-fold relaxation compared to M1. 
The effects were multifarious: the relaxed require-
ments had an exponential effect on the expected 
data volume per unit area reducing it by a factor of 
nine. Secondary effects, such as less overlap and 
acceptance of the risk of a slightly more motion blur, 
reduced the data capturing time and data volume. 
However, any deviation from the standard recom-
mended settings harboured the risk of a higher 
error rate in the process of producing the overview 
images, and/or of differing results obtained in the AI 
analysis.

In particular, the risk of missing tiny defects 
was higher in M2 given that the theoretically small-
est detectable defect in M2 is increased three-fold 
compared to M1. That notwithstanding, M2 proved 
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Figure 2: Representative sample of the originally captured images 
of M1. The image resolution is 0.25 mm/pixel. 

Figure 3: Representative sample of the originally captured images 
of M2. The image resolution is 0.75 mm/pixel. The GSD of M2 is 
three times larger than that of M1. This becomes apparent from 
the approximately nine times larger area covered by the M2 refe-
rence image compared to M1. 
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to be a viable solution that is ten times faster and 
able to cover the same area as M1. M3 was carried 
out with large overlap requirements that corre-
sponded to those of external tools. pixmap gmbh 
additionally provided the georeferenced M3 ortho-
photo as a comparison. M3 covered only roughly 
30% of the total test area that was fully covered in 
M1 and in the fast M2 setup.

Image stitching algorithm 

Image stitching algorithms typically require 
high overlaps of about 70% to work reliably. Further-
more, drone missions for mapping are usually sub-
ject to less stringent requirements, with accuracy of 
a few centimetres. The impact of these factors was 
that the image data for this project was captured 
at the limit of what is considered technologically 
feasible. In addition, the stricter the demands, the 
greater the effect of regular noise in physical sys-
tems, e.g. imprecisions of GPS location, deviations 
from the planned route due to external conditions 
(wind), and camera-related errors (e.g. deviations 
from the expected orientation). However, consistent 
identification of individual cracks requires a pixel- 
and sub-millimetre accurate location alignment. 
By contrast, regular GPS location receivers only 
deliver metre-accurate positioning under moderate 
assumptions. In this project, pixmap gmbh used a 
real-time kinematic (RTK) enabled GPS that delivers 
a nominal accuracy of one centimetre. Typical-
ly, alignment requirements exceed this quantity 
so drone location information is considered to be 
precise and triangulation can rely heavily on the 
drone location. By contrast, missions M1 and M2 had 
shorter GSDs and, hence, stricter alignment require-
ments below the noise level. This atypical assump-
tion rendered the image reconstruction challenging 
for M1 and M2.

For this project, IBM Research developed 
and applied a customised variant of image stitch-
ing technology to solve the described challenges. 
IBM Research’s algorithm variant operates in three 
main steps. In a first step, information is extracted 
to define a global optimisation problem. In a second 
step, the optimisation problem is solved and, in a 
third step, all data is post-processed to produce all 
tiles allowing to populate the data that is displayed 
by the viewer. The first step is further decomposed 
into a neighbourhood search of close images based 
on the GPS metadata to enhance the processing 
time. For each established pair, a two-step image 
stitching problem is solved to visually align those 
image instances. Corresponding point pairs from 
both images are extracted for the matched key 
points passing the filtering stage. The two clusters of 
key points must match each other in the final view, 
henceforth defining error equations related to a sin-
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Figure 4: Preview of the overview of M2. Even in the challenging 
setup with little overlap, the stitching algorithm was able to  
fully reconstruct the full scene consisting of 816 original images.  
The test area encompasses 200 metres of runway and is  
40 metres wide. The overview image is available with a GSD  
of 0.75 mm/pixel.
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gle pair. Pair equations are extracted for the collec-
tion of established pairs. Due to the planar nature 
of the data at hand, the final optimisation problem 
is formulated directly in the 2D image space of the 
target overview image that is assembled.

The loss function consists of three terms: 
visual alignment, size regularisation and position 
regularisation. The visual alignment loss is comput-
ed over the pair equations aligning key points for 
each two images. Size regularisation is introduced 
over the length of the projected image edges ensur-
ing they match a reference length of the original im-
age size. Without this loss, the optimisation problem 
tends to shrink images as, while it does not improve 
the alignment, it still consistently improves all error 
equations. Position regularisation is introduced so 
that all projected centre points of the optimised 
image positions follow the same pattern as record-
ed within the GPS position attached to each image. 
As presented above, the nominal accuracy of the 
GPS is limited. Therefore, a relatively weak regu-
larisation factor was used to account for potential 
errors present in that information. Still, the position 
regularisation loss helps to place images with global 
accuracy on the positions they belong. Without this 
step, the algorithm tends to seamlessly solve the 
alignment (so that pairwise overlaps among imag-
es look good), but also has the tendency of errors 
accumulating in such a way that a drift pattern be-
comes visible when images are not globally placed 
correctly. Accounting for all three loss factors, IBM 
Research was able to process M1 and M2 data to re-
liably produce overview results for the entire scene.

The reconstruction for M2 data was done di-
rectly for the entire scene consisting of 816 images. 
n*(n-1)/2 pairs exist for n images yielding a total of 
332,520 image pairs. Applying the clustering to the 
GPS data and only considering image pairs where 
the drone was positioned in five-metre proximity, the 
number of considered pairs was reduced to 19,023 
pairs, thus reducing the number of equations by 
94.3%.

M1 consisted of a vast amount of data that 
exceeded 10,000 files, making it challenging to pro-
cess everything all at once. With a view to treating 
the data more efficiently, reducing the work per 
task, potentially benefitting greatly from parallel 
task processing, allowing for partial recovery and 

shortening iteration cycles during debugging, IBM 
Research decided to split the data into groups that 
were treated independently. This divide-and-con-
quer principle showed that it made sense to keep a 
limit of maximum 200 images per optimisation run. 
To also maintain the project structure, which provid-
ed for delivery of M1 data in 14 blocks, IBM research 
further decided to subdivide each block into five 
data chunks. Hence, seventy independent prob-
lems, each consisting of 164.7 images on average, 
were solved, following pre-processing, global opti-
misation solving and post-processing as described 
above.

To further process data efficiently, IBM Re-
search implemented merging routines that took the 
results of multiple solved subproblems and solved 
the implied larger problem. This process was imple-
mented efficiently, so that work already performed 
in a subproblem could be stored and reused. For 
instance, extraction of all interest points and their 
feature vectors were not recomputed but reload-
ed, thus saving a substantial amount of computing 
time. In addition, error equations for the merging 
problems were only updated for image pairs that 
connected new image chunk pair equations. Image 
pairs already present in existing chunks were reload-
ed. The algorithm was able to process all M1 data 
in each of the seventy chunks without any problem. 
IBM Research performed the merging routine 14 
times in order to merge all five sub-chunks into each 
block as data was provided.
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a)

Figure 5: Preview of the M1 merged stitching results per block. 
Subfigures a), b, and c) each show the reconstructed overview 
corresponding to one block as data was provided. Result images 
are available in full M1 resolution of 0.25 mm/pixel. On average, 
each of the 14 merged blocks consists of 823.6 original M1 images.

b) c)
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AI technology for reliable crack  
detection

The AI model used for crack detection is a result of 
a foundation model for visual inspection which IBM 
designed to tackle detection tasks on general civil 
infrastructure.

The model uses the recent vision transformer 
architecture, which relies on self-attention blocks 
rather than traditional convolutional blocks to 
extract information from images. This foundation 
model for visual inspection is trained in a hierarchi-
cal manner using IBM’s foundation model pre-train-
ing pipeline. The different stages of this pipeline 
iteratively tailor the model towards a particular task 
all while using mostly unlabelled data, i.e. data con-
taining no annotations of defects. 

In the first stage of the pipeline, the model 
is trained on large-scale common object datasets 
using self-supervised learning (SSL). This consists of 
solving a pretext task, such as reconstructing an im-
age after having obfuscated parts of it. This teaches 
the model to process the image data and attend to 
specific parts of it so that it can do its task success-
fully. The result is a model that understands and can 
now extract useful information from images.

The above step is repeated once again. 
However, in the second stage of the pipeline, a more 
technical dataset is used. In this case, the model 
uses a civil infrastructure dataset. This is a collec-
tion of images of bridges, roads, and so forth. The 
result of this stage of the pipeline is a model which 
is now tailored towards civil infrastructure. In other 
words, the model now understands civil infrastruc-
ture images and can process them properly.

The final step involves fine-tuning the mod-
el using supervised learning to perform the final 
intended task, also known as the downstream task. 
The model is trained using labelled images and is 
instructed to locate and detect pixels belonging 
to certain defects, in this case detecting cracks. 
This training step involves using images with cracks 
already labelled on the images. The model’s task is 
to locate the same cracks given only the images to 
start with.

The result is a foundation model for visual in-
spection which is particularly tuned towards detect-
ing cracks on civil infrastructure images.

Summary of project-specific results

IBM Research ran the AI model described above 
on all original images from missions M1 and M2. M3 
was examined by injecting an externally assembled 
image. Since the full scene was subdivided into 
tiles of 1024x1024 pixels in size, the main analysis 
of this data was carried out on the said tiles. IBM 
Research considered M3 data as additional data 
demonstrating an external assembly, but that only 
covers 30% of the total test area. Therefore, the AI 
team focussed on comparison of M1 and M2 data. 
Note needs to be taken of the fact that both M1 and 
M2 are superior to M3 in terms of capturing volume/
quality ratio, given that M1 has a roughly three times 
better GSD for similar data volumes, and M2 has 
12.9 times less data than M3 with a similar GSD. M1 
and M2 missions achieved far better quality within 
roughly the same time, or delivered the same quality 
with less effort involved. Accordingly, the results of 
M2 are considered sufficiently good for a fair as-
sessment of the section of the runway under study. 
Furthermore, if requirements are met, it is feasible 
to capture the entire runway (approx. 2.8 km) in less 
than a day. 
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Table 2: Overview of number of detected crack instances for 
missions M1 and M2. The total consists of all detected instances, 
which is quite large since the AI model was run in a sensitive mode 
with all predictions with confidence above 0.2 reported. Note that 
the second line reports lower numbers where instances with a 
confidence of at least 0.5 were considered. Even though the GSD 
of M2 is three times inferior to that of M1, only around 33% fewer 
defects (or 15%, respectively) were reported.

Figure 6: Frequency of AI model predicted confidence scores 
computed among all results of the M1 and M2 missions. Results 
below a score of 0.2 are clipped away. Both results follow a similar 
distribution; however, M1 tends to predict more instances than 
predicted on the M2 image material. This difference is larger 
towards the peak of the distributions. However, towards the 
confident tail of the distribution, more similar results are obtained, 
indicating that the M2 setup is well suited to provide similar results 
to M1, especially if the main results are concluded from a filtered 
view of confident crack instances.
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Mission M1 M2 M2 vs. M1

Total crack instances 3,920 2,629 32.9% less

Confidence (>0,5) 691 586 15.2% less

Next, IBM Research performed a qualitative test 
where the same crack instance was selected 
through the OCL annotation viewer to demonstrate 
that all three views based on the three missions 
M1, M2, and M3 provided similar results. All models 
tended to make false crack predictions at the edge 
between the kerb and the actual surface of the 
runway. The noisy detections explain the noise com-
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a)

Figure 7: Predicted defect viewed through OCL. Comparing 
zoomed views focussing on the same location of the runway. Sub-
figure a) shows M3 results which are aligned so that north is at the 
top; hence, the image is rotated. M1 and M2 are aligned so that 
the main axis of the runway corresponds to the image orientation. 
Subfigure b) shows results for M1 (fine setup) and subfigure c) for 
M2 (fast setup). The real crack, which extends into the surface of 
the runway, is reliably detected in all three setups.

Figure 8: Screenshot of the OCL image viewer which provides 
access to all original project data.

b)

c)
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OCL tool for presenting results

The one-click-learning (OCL) tool is an IBM research 
asset continuously developed to demonstrate, 
populate, produce, iterate and view AI results. For 
the scope of this project, only share and showcase 
functionality of the tool was used.

Main OCL features:
• Image viewer to access images 
• Prediction viewer to access all AI model results 

for each image
• Overview image viewer to access the overview  

of the runway
• Overview containing merged view of merged 

predictions
• Statistical view summarising predicted defects
• Reporting functionality exporting documentation 

of defects

Image viewer

The image viewer allows access to all images pro-
vided. The tool can keep any nested folder structure 
to navigate the vast volume of provided data. The 
M1 mission was structured into 14 blocks covering 
the runway from east to west, the M2 mission was 
structured in five blocks covering the runway in the 
same direction. No raw images were populated for 
M3 since the tool is used to demonstrate the full flow 
when injecting an externally assembled orthophoto.

Overview image viewer 

With this feature, scenes of any size can be viewed 
with full precision and almost in real time. To provide 
such a service on custom data, IBM Research has 
developed and runs front and backend services to 
maintain a tile server that can host and dynamically 
load on demand the request part that is currently 
displayed. For each view, data must be injected 
following a specific format of tiling the full view so 
that it can be efficiently served. For the scope of 
this project, IBM Research made sure to implement 
functionality to retrofit and inject large TIFF files 
into the image viewer tool, to directly support the 
orthophoto data provided in M3. All of the results 
obtained with IBM Research’s variants of the image 
stitching algorithm, were dumped, stored and popu-
lated in order for users to view them efficiently. 

ponents present in the AI detections. However, the 
real crack, which is of significance since it extends 
into the actual surface of the runway, is reliably 
detected in all three missions. In cases like the one 
presented, that are large enough to be visible on the 
image (even if captured at the lower resolution of 
M2), the AI models of IBM Research are able to de-
tect them. In this sense, the M2 setup is sufficient to 
detect cracks similar to the one shown and to fulfil 
the needs of the overall analysis.
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Figure 9: Screenshot of the OCL overview image viewer which 
allows access to the entire scene in full resolution. In this view, the 
M2 project shows the full test area, with the original images highl-
ighted and the size of a selected original image displayed. This 
view can be used to navigate directly to the original image.

Figure 11: Screenshot of the OCL image viewer. Crack detections 
are marked in red on the original image. This view shows captured 
images and related AI model results. On the left, the mini map is 
available to highlight the part where the image is located.

Figure 10: Screenshot of the OCL overview image viewer, with de-
tails fully preserved in full resolution. For a better understanding of 
the achieved resolution, grass details captured in the background 
of M2 are displayed.

Figure 12: Screenshot of the OCL overview image. A crack detec-
ted within the scope of M2 is highlighted and displayed in the 
overview image viewer.

V. Appendix: Technical IBM Research Report

Prediction viewer 

Unless stated otherwise, AI models are always de-
ployed elementwise on the original images, provid-
ing elementwise results. In this Innovation Sandbox 
project, IBM Research deployed an AI instance seg-
mentation model to obtain pixel-accurate segmen-
tation masks of cracks. Related attributes such as 
the length of the crack are automatically extracted 
from the predicted geometry. Additional attributes 
such as the predicted score are populated as well; 
they measure how confident the AI model is as to a 
certain prediction being an actual defect.

Predictions on overview images

The main analysis was executed on the original im-
ages, processing over 11,500 images for M1. Inspect-
ing, interpreting and drawings conclusions on such 
views by elements tends to be challenging as it be-
comes tricky for the user to capture the full context 
all at once. The stitched overview allows the user to 
view the direct context of each entry and to under-
stand where the defect is located and how it might 
be related to other defects in the vicinity. Addition-
ally, all entries were aligned and merged into logical 
entities. For example, a crack in the overlapping 
area of multiple images was captured multiple times 
and, therefore, typically detected multiple times, in 
each image in which it appeared. In the overview, 
those detected incidents were mapped into a single 
prediction. Additionally, the same process im-
proved detection accuracy as defects had multiple 
chances of being detected and, if missed in some 
images, remained visible in the overview if detected 
correctly in at least one original image. For track-
ing purposes, the overview image can display the 
location of each original image as well as reference 
back to each original detection for every defect in 
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the source image material. Therefore, the overview 
could be used efficiently to navigate directly across 
all of the available data.

Statistical summary

IBM Research provided aggregated summaries 
containing statistics on the occurrence of all de-
fects. The said statistics can be aggregated at each 
hierarchical node obtaining granular results cover-
ing only partial sections of data. The basic statistic 
is aggregated over the original images reflecting 
an elementwise analysis. In addition, this statistic 
was created in aggregated form over the stitched 

Figure 13: Screenshot of the OCL statistical summary page of M2 
data. M2 data consists of 816 images that have been merged into 
one single overview image. The total number of detected defects 
is 2,629 in the original data and amounts to only 1,269 instances 
(48.2% of the original number of detections) when predictions are 
merged on the overview image. The majority of 70.5% (i.e. 575 
images) is free of predicted defects. 

overview image, containing fewer annotations due 
to multiple detections being merged resulting in a 
single unified view of existing defects.

Reports 

For all data populated in the OCL tool, reports can 
be extracted and produced that document all find-
ings. The reports include an overview table section 
as well as a detail view section for each defect. If 
the tool is used to review the predicted annotations, 
additional information such as condition rating, 
defect variant classification and comments can be 
added by the competent expert to complete the 
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report. The detail section of the report contains a 
detailed view of the detected defect as well as a 
preview of the overview depicting the actual phys-
ical location of the defect so that it can be easily 
found on site. Important attributes, such as length 
measurements, prediction scores and GPS loca-
tions, are all reported. All entries are directly linked 
to the OCL tool so that the hyperlink leads straight 
to the zoomed view of the defect visualised by the 
IBM Research tool.

In this project, IBM Research provided the 
full report of M2 data, as well as a view of selected 
crack detections.  

Conclusion and outlook

The project successfully demonstrated how large 
amounts of data can be systematically captured 
and evaluated by AI models. Cracks were correctly 
identified in all three missions (M1, M2, and M3). For 
practical reasons, to be able to scan large areas 
within a reasonable time, it is imperative for captur-
ing to be performed efficiently. IBM has demonstrat-
ed that the M1 and M2 setups are superior to the M3 
setup. Moreover, the conclusion drawn is that the 
resolution of M2 is sufficient to capture the impor-
tant cracks necessary to fully document and make 
solid decisions on the condition of the runway. 

The data captured for the Dubendorf run-
way is the first dataset of its kind that provides 
three different mission types for the same test area. 
Furthermore, the inspected area was consistently 
captured with a resolution of 0.25 mm/pixel. Access 
to real-world data of this kind is extremely important 
for research as it allows for the latest AI algorithms 
and strategies to be evaluated and improved in a 
real-life context. As such, the data will be relevant 
and add value over the next decade, helping to 
benchmark the latest developments of AI technolo-
gy in the domain of automated image detection. 

Furthermore, each project within which AI 
is used successfully confirms that the developed 
foundation models work reliably in a broader con-
text. This also increases the chances of successfully 
applying the same AI models to other areas, such as 
inspecting the facades of large buildings, bridges, 
dams, tunnels or road surfaces.
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Annotated data data labelled with addi-
tional information, known as annotations. 
For images, labels can be assigned, for 
instance, to objects or areas of interest. 
Annotated data is particularly relevant in 
the context of machine learning and AI. 

Deep learning a subfield of machine 
learning based on artificial neural 
networks and particularly effective for 
recognising patterns and processing 
unstructured data. 

Digital twin a digital representation of a 
physical object, process or a system that 
can be used for analyses, simulations and 
steering.  

Few-shot learning a method of machine 
learning in which models are developed 
in such a way that they can get by with a 
very small number of examples.    
 
Foundation model a large pre-trained 
model in the domain of AI that serves 
as a basis for building specific models. 
Foundation models are trained on a vast 
quantity of data, so as to develop a broad 
range of skills and can subsequently be 
adapted for specific tasks.  

GPU (graphics processing unit) a hard-
ware component specially designed for 
processing graphics and images. In AI 
and machine learning, GPU is used for 
fast processing of calculations. 

GPS (Global Positioning System) a satel-
lite-based system that provides geopo-
sitioning of objects anywhere on the Earth.  

GSD (ground sampling distance) distance 
between two pixels measured on the 
ground in metres. GSD is a measurement 
for the resolution of an image.  

Machine learning a branch of AI that 
allows computers to learn from data and 
to make decisions without being explicitly 
programmed.  

Orthophoto aerial photograph that 
has been orthorectified so that it has 
the geometric properties of the terrain. 
Distortions due to perspective and height 
differences are corrected.

Quadcopter a type of drone that has 
four rotors on one level. Quadcopters are 
popular because of their stability and 
manoeuvrability and are often used for 
photography, videography and inspec-
tions, including for projects that involve 
creating high-quality imagery.  

RTK (real-time kinematic) a technology to 
improve the accuracy of GPS systems that 
works in real time and is used especially in 
surveying.

Self-supervised learning unsupervised 
learning process where models learn by 
making predictions in a specific con-
text. The predictions made are, however, 
already known.  

Transfer learning a technique in machine 
learning that transfers knowledge devel-
oped for one task to a new, but related 
task.

Glossary
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